Jump to content

Patrick Blackett

From Wikipedia, the free encyclopedia
(Redirected from P. M. S. Blackett)

The Lord Blackett
Blackett in 1948
Born
Patrick Maynard Stuart Blackett

(1897-11-18)18 November 1897
London, England
Died13 July 1974(1974-07-13) (aged 76)
London, England
Resting placeKensal Green Cemetery, London
Alma materOsborne Naval College
University of Cambridge
Known forCloud chamber
Paleomagnetism
Spouse
Costanza Bayon
(m. 1924)
Children2; Giovanna Blackett Bloor and Nicolas Blackett
Awards
Scientific career
FieldsPhysics
Institutions
Academic advisorsErnest Rutherford
Doctoral students
Other notable studentsJ. Robert Oppenheimer[4]
Ishrat Hussain Usmani[5][6]
Signature
Giuseppe (Beppo) P.S. Occhialini (1907–1993) and Patrick Blackett in 1932 or 1933

Patrick Maynard Stuart Blackett, Baron Blackett (18 November 1897 – 13 July 1974) was an English physicist who received the 1948 Nobel Prize in Physics.[7] In 1925, he was the first person to prove that radioactivity could cause the nuclear transmutation of one chemical element to another.[8] He also made major contributions to the Allied war effort in World War II, advising on military strategy and developing operational research.

In the war's aftermath, Blackett continued his scientific work, but also became outspoken on political matters. He advocated for restraints on the military use of atomic energy. He was a proponent for Third World development and for reducing the gap between rich and poor.[9][10] In the 1950s and '60s, he was a key advisor to the Labour Party on science and technology policy.[11][12] By the time of his death in 1974, Blackett had become controversial to the point that the Times obituary referred to him as the "Radical Nobel-Prize Winning Physicist".[13]

Early life and education

[edit]

Blackett was born in Kensington, London, the son of Arthur Stuart Blackett, a stockbroker, and his wife Caroline Maynard.[14] His younger sister was the psychoanalyst Marion Milner. His paternal grandfather Rev. Henry Blackett, brother of Edmund Blacket the Australian architect, was for many years vicar of Croydon. His maternal grandfather Charles Maynard was an officer in the Royal Artillery at the time of the Indian Mutiny. The Blackett family lived successively at Kensington, Kenley, Woking and Guildford, Surrey, where Blackett went to preparatory school. His main hobbies were model aeroplanes and crystal radio. When he went for interview for entrance to the Royal Naval College, Osborne, Isle of Wight, Charles Rolls had completed his cross-channel flight the previous day and Blackett who had tracked the flight on his crystal set was able to expound lengthily on the subject. He was accepted and spent two years there before moving on to Dartmouth where he was "usually head of his class".[15]

In August 1914 at the outbreak of World War I, Blackett was assigned to active service as a midshipman. He was transferred to the Cape Verde Islands on HMS Carnarvon and was present at the Battle of the Falkland Islands. He was then transferred to HMS Barham and saw much action at the Battle of Jutland. While in HMS Barham, Blackett was co-inventor of a gunnery device on which the Admiralty took out a patent. In 1916, he applied to join the RNAS but his application was refused. In October of that year, he became a sub-lieutenant on HMS P17 on Dover patrol, and in July 1917 he was posted to HMS Sturgeon in the Harwich Force under Admiral Tyrwhitt.[16] Blackett was particularly concerned by the poor quality of gunnery in the force compared with that of the enemy and of his own previous experience, and started to read science textbooks. He was promoted to lieutenant in May 1918, but had decided to leave the Navy. Then, in January 1919, the Admiralty sent the officers whose training had been interrupted by the war to the University of Cambridge for a course of general duties. On his first night at Magdalene College, Cambridge, he met Kingsley Martin and Geoffrey Webb, later recalling that he had never before, in his naval training, heard intellectual conversation. Blackett was impressed by the prestigious Cavendish Laboratory, and left the Navy to study mathematics and physics at Cambridge.[17]

Career and research

[edit]

After graduating from Magdalene College in 1921, Blackett spent ten years working at the Cavendish Laboratory as an experimental physicist with Ernest Rutherford and in 1923 became a fellow of King's College, Cambridge, a position he held until 1933.

Rutherford had discovered that the nucleus of the nitrogen atom could be disintegrated by firing fast alpha particles into nitrogen. He asked Blackett to use a cloud chamber to find visible tracks of this disintegration, and by 1925, Blackett had taken 23,000 photographs showing 415,000 tracks of ionized particles. Eight of these were forked, and this showed that the nitrogen atom-alpha particle combination had formed an atom of fluorine, which then disintegrated into an isotope of oxygen 17 and a proton. Blackett published the results of his experiments in 1925.[8] He thus became the first person to deliberately transmute one element into another.[18]

During his time at Cambridge, Blackett was the head tutor of the young American graduate student, J. Robert Oppenheimer. The latter's desire to study theoretical physics rather than focus on lab work brought him into conflict with Blackett. While seeking help for a psychiatric breakdown induced by the demanding Blackett, Oppenheimer admitted to trying to poison his tutor with an apple laced with toxins.[19] Blackett did not eat the apple and no punitive action was taken against Oppenheimer for the attempted poisoning.[20]

Blackett spent time in 1924–25 in Göttingen, Germany, working with James Franck on atomic spectra. In 1932, Blackett partnered with Giuseppe Occhialini to devise a system of Geiger counters which took photographs only when a cosmic ray particle traversed the chamber. They found 500 tracks of high energy cosmic ray particles in 700 automatic exposures. In 1933, Blackett discovered fourteen tracks which confirmed the existence of the positron and revealed the now instantly recognisable opposing spiral traces of positron/electron pair production. He and Occhialini published their findings in a landmark 1933 paper in Proceedings of the Royal Society A.[21] This work, combined with his research on annihilation radiation, made Blackett a leading expert in the new theory of antimatter.

That same year, he moved to Birkbeck, University of London, as professor of Physics, and stayed for four years. In 1937, he went to the Victoria University of Manchester where he was elected to the Langworthy Professorship and created a major international research laboratory. The Blackett Memorial Hall and Blackett Lecture Theatre at the University of Manchester were subsequently named after him.

In 1947, Blackett introduced a theory to account for the Earth's magnetic field as a function of its rotation, with the hope that it would unify both the electromagnetic force and the force of gravity. He spent a number of years developing high-quality magnetometers to test his theory, and eventually found it to be without merit. However, his work on the subject led him into geophysics, where he later helped process data relating to paleomagnetism, and also provided strong evidence for continental drift.

Blackett ca. 1950

He was awarded the 1948 Nobel Prize in Physics for his investigation of cosmic rays using his invention of the counter-controlled cloud chamber.[22]

In 1953, he was appointed head of the Physics Department at Imperial College London, and retired from there in July 1963. The Physics department building of Imperial College, the Blackett Laboratory, is named in his honour.

In 1957, Blackett gave the presidential address ("Technology and World Advancement") to the British Association meeting in Dublin[23] In 1965, he delivered the MacMillan Memorial Lecture to the Institution of Engineers and Shipbuilders in Scotland. He chose the subject "Continental Drift".[24]

World War II and operational research

[edit]

In 1935, Blackett was invited to join the Aeronautical Research Committee chaired by Sir Henry Tizard. The committee was effective in advocating for the early installation of Radar for air defence. At the beginning of World War II, Blackett served on various committees and spent time at the Royal Aircraft Establishment (RAE) Farnborough, where he made a major contribution to the design of the Mark XIV bomb sight, which allowed bombs to be released without a level bombing run beforehand. In 1940–41, he served on the MAUD Committee which concluded that an atomic bomb was feasible. He disagreed with the committee's conclusion that Britain could produce an atomic bomb by 1943, and he recommended that the project should be discussed with the Americans. He was elected a Fellow of the Royal Society (FRS) in 1933[25] and awarded its Royal Medal in 1940.

In August 1940, Blackett became scientific adviser to Lieutenant General Sir Frederick Pile, Commander in Chief of Anti-Aircraft Command and thus began the work that resulted in the field of study known as operational research (OR). He was director of Operational Research with the Admiralty from 1942 to 1945, and his work with E. J. Williams improved the survival odds of convoys, presented counter-intuitive but correct recommendations for the armour-plating of aircraft and achieved many other successes. His aim, he said, was to find numbers on which to base strategy, not gusts of emotion. During the war he criticised the assumptions in Lord Cherwell's dehousing paper and sided with Tizard who argued that fewer resources should go to RAF Bomber Command for the area bombing offensive and more to the other armed forces, as his studies had shown the ineffectiveness of the bombing strategies, as opposed to the importance of fighting off the German U-boats, which were heavily affecting the war effort with their sinkings of merchant ships.[26][27] In this opinion he chafed against the existing military authority and was cut out of various circles of communications. However, after the war, the Allied Strategic Bombing Survey proved Blackett correct.

Politics

[edit]

While an undergraduate, Blackett befriended Kingsley Martin, the future editor of the New Statesman; their talks on politics contributed to Blackett's move to the left. He later identified himself as a socialist, and often campaigned on behalf of the Labour Party. In the aftermath of World War II, Blackett became known for his radical political opinions, which included a belief that Britain ought not to develop atomic weapons. His biographer Mary Jo Nye noted:

Blackett became the first person to openly argue that the United States had used the atomic bomb in Japan "not so much as the last military act of the Second World War, as the first act of the cold diplomatic war with Russia." Outraged Americans characterized Blackett's statements and his opposition to their development of atomic weapons as a Stalinist apology full of political prejudices. George Orwell in 1949 included Blackett on a blacklist of thirty-eight crypto-communists or fellow-travellers that Orwell drew up for the British Foreign Office.[9]

As a result of these controversies, Blackett was considered too far to the left for the post-war Labour Government to employ, and he returned to academic life.

Blackett's internationalism found expression in his strong support for India. In 1947 he met Jawaharlal Nehru, who sought the scientist's advice on the research and development needs of the Indian armed forces. For the next 20 years, Blackett was a frequent visitor and advisor to India on military and civil science.[10] These visits deepened his concern for the underprivileged and the poor. He was convinced that their problems could be overcome by applying science and technology. He used his prestige in the scientific community to try to persuade fellow scientists that one of their first duties should be to help ensure a decent life for all mankind.[28] Before underdevelopment became a popular issue, Blackett proposed in a 1957 presidential address to the British Association for the Advancement of Science that his country should devote 1% of its national income to the economic improvement of the Third World, and he was later one of the prime movers in the founding of the Overseas Development Institute.[29]

During the 13 years when the Labour Party was out of office, Blackett was the senior member of a group of scientists who met regularly to discuss scientific and technological policy. This group grew in influence when Harold Wilson assumed leadership of the Party.[9] Blackett's suggestions directly led to the creation of the Ministry of Technology as soon as the Wilson government was formed, and he insisted that a top priority should be revival of Britain's computer industry.[11] Blackett did not enter open politics, but worked for a year as a civil servant. He remained deputy chairman of the Minister's Advisory Council throughout the administration's life, and was also personal scientific adviser to the Minister.

Publications

[edit]
  • Military and Political Consequences of Atomic Energy. London: Turnstile Press. 1948. LCCN 48010864. Published the following year in the U.S. under the title Fear, War, and the Bomb.
  • Atomic Weapons and East/West Relations. Cambridge University Press. 1956. ISBN 978-0-521-04268-0.
  • Studies of War: Nuclear and Conventional. New York: Hill and Wang. 1962. LCCN 62019962.

Influence in fiction

[edit]

Personal life

[edit]

Blackett was an agnostic or atheist.[32] He had refused many honours, in the manner of a radical of the twenties, but accepted appointment as Member of the Order of the Companions of Honour in the 1965 Birthday Honours,[33] and was appointed to the Order of Merit in 1967.[34] He was created a life peer on 27 January 1969 as Baron Blackett, of Chelsea in Greater London.[35] He was made President of the Royal Society in 1965. The crater Blackett on the Moon is named after him.

Blackett married Costanza Bayon (1899–1986) in March 1924. They had a son and a daughter.

The Blackett Laboratory is part of Imperial College Faculty of Natural Sciences and has housed the Physics Department since its completion in 1961.

Blackett died on 13 July 1974 at age 76. His ashes are buried in the Kensal Green Cemetery, London.

Bernard Lovell wrote of Blackett: "Those who worked with Blackett in the laboratory were dominated by his immensely powerful personality, and those who knew him elsewhere soon discovered that the public image thinly veiled a sensitive and humane spirit".[25]

Edward Bullard said that he was the most versatile and best loved physicist of his generation and that his achievement was also without rival: "he was wonderfully intelligent, charming, fun to be with, dignified and handsome".[36]

In 2016, the house that Blackett lived in from 1953 to 1969 (48 Paultons Square, Chelsea, London) received an English Heritage blue plaque.[37]

In July 2022, the Royal Navy named an experimental ship after Blackett in honour of his service to the Royal Navy and to the country; "XV Patrick Blackett" will be used by the Royal Navy to experiment with autonomous technologies.[38]

[edit]

Blackett was portrayed by James D'Arcy in the 2023 film Oppenheimer.

See also

[edit]

References

[edit]
  1. ^ McKenzie, D.P. (23 May 2018). "Bullard, Edward Crisp". encyclopedia.com.
  2. ^ Chowdhuri, Bibha (1949). Extensive air showers associated with penetrating particles. jisc.ac.uk (PhD thesis). University of Manchester. OCLC 643572452. EThOS uk.bl.ethos.601680. Archived from the original on 6 December 2018. Retrieved 6 December 2018.
  3. ^ Creer, Kenneth M. (11 January 1996). "Stanley Keith Runcorn (1922—95)" (PDF). Nature. 379.
  4. ^ Bird, Kai; Sherwin, Martin J. (2005). American Prometheus: The Triumph and Tragedy of J. Robert Oppenheimer. New York: Alfred A. Knopf. pp. 42–43. ISBN 978-0-375-41202-8. OCLC 56753298.
  5. ^ "Imdad-Sitara Khan Scholarship". www.spaandanb.org. SpaandanB Project. Archived from the original on 6 April 2017. Retrieved 5 April 2018.
  6. ^ "Biography: Dr. Imdadul Haque". www.iskkc.org. Archived from the original on 4 February 2018. Retrieved 5 April 2018.
  7. ^ H. S. W., Massey (September 1974). "Lord Blackett". Physics Today. 27 (9): 69–71. Bibcode:1974PhT....27i..69M. doi:10.1063/1.3128879.
  8. ^ a b Blackett, Patrick Maynard Stuart (2 February 1925). "The ejection of protons from nitrogen nuclei, photographed by the Wilson method". Proceedings of the Royal Society A. 107 (742): 349–360.
  9. ^ a b c Nye, Mary Jo (26 January 2005). "Professor Blackett Lecture: 'Blackett as Scientific Leader: Physics, War and Politics in the Twentieth Century'". Imperial College London.
  10. ^ a b Anderson, R. S. (1999). "Patrick Blackett in India: Military consultant and scientific intervenor, 1947-72. Part one". Notes and Records of the Royal Society. 53 (2): 253–273. doi:10.1098/rsnr.1999.0079. S2CID 144374364.
  11. ^ a b Anderson, D. (2007). "Patrick Blackett: Physicist, Radical, and Chief Architect of the Manchester Computing Phenomenon". IEEE Annals of the History of Computing. 29 (3): 82–85. doi:10.1109/mahc.2007.4338448.
  12. ^ Nye, Mary Jo (2004). "Blackett, Patrick Maynard Stuart, Baron Blackett (1897–1974)". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/30822. (Subscription or UK public library membership required.)
  13. ^ "Lord Blackett: Radical Nobel-Prize Winning Physicist". The Times. London. 15 July 1974.
  14. ^ Kirby, M. W.; Rosenhead, J. (2011). "Patrick Blackett". Profiles in Operations Research. International Series in Operations Research & Management Science. Vol. 147. pp. 1–29. doi:10.1007/978-1-4419-6281-2_1. ISBN 978-1-4419-6280-5.
  15. ^ Lovell, Bernard (1976). P. M. S. Blackett: A Biographical Memoir. John Wright & Sons. pp. 1–3. ISBN 0854030778.
  16. ^ Nye, Mary (2004). Blackett. Physics, War, and Politics in the Twentieth Century. Harvard University Press. p. 23. ISBN 9780674015487.
  17. ^ Lovell 1976, pp. 3–5
  18. ^ "Atop the Physics Wave: Rutherford Back in Cambridge, 1919-1937". Rutherford's Nuclear World: The Story of the Discovery of the Nucleus. American Institute of Physics. p. 4.
  19. ^ Bird & Sherwin 2005, p. 46.
  20. ^ "Patrick Blackett: Physicist, United Kingdom (Nobel Prize Winner, Scientist)". ahf.nuclearmuseum.org. Retrieved 19 July 2023.
  21. ^ Blackett, Patrick Maynard Stuart; Occhialini, Giuseppe Paolo Stanislao (3 March 1933). "Some photographs of the tracks of penetrating radiation". Proceedings of the Royal Society A. 139 (839). Blackett's contribution to this discovery was a key reason he was later awarded the Nobel Prize.
  22. ^ "The Nobel Prize in Physics 1948". The Nobel Prize.
  23. ^ Blackett, P. M. S. (1957). "Technology and World Advancement". Bulletin of the Atomic Scientists. 13 (9): 323–326.
  24. ^ "Hugh Miller Macmillan". Macmillan Memorial Lectures. The Institution of Engineers in Scotland. Retrieved 16 July 2014.
  25. ^ a b Lovell, Bernard (1975). "Patrick Maynard Stuart Blackett, Baron Blackett, of Chelsea. 18 November 1897 – 13 July 1974". Biographical Memoirs of Fellows of the Royal Society. 21: 1–115. doi:10.1098/rsbm.1975.0001. S2CID 74674634.
  26. ^ Longmate, Norman (1983). The bombers: the RAF offensive against Germany, 1939–1945. Hutchinson. p. 132. ISBN 978-0-09-151580-5.
  27. ^ Hore, Peter (2002). Patrick Blackett: Sailor, Scientist, Socialist. Psychology Press. p. 181. ISBN 978-0-7146-5317-4.
  28. ^ Nye, Mary Jo (5 April 2002). "'The Most Versatile Physicist of His Generation'". Science. Vol. 296, no. 5565.
  29. ^ Hodgkin, Alan; Massey, Harrie; Martin, David; Occhialini, G.P.S.; Lovell, Bernard; Waddington, C.H.; Butler, C.C.; Runcorn, S.K.; Menon, M.G.K. (March 1975). "Memorial Meeting for Lord Blackett, O.M., C.H., F.R.S. at the Royal Society on 31 October 1974". Notes and Records of the Royal Society of London. 29 (2): 135–162.
  30. ^ Nye, M. J. (1999). "A Physicist in the Corridors of Power: P. M. S. Blackett's Opposition to Atomic Weapons Following the War". Physics in Perspective. 1 (2): 136–156. Bibcode:1999PhP.....1..136N. doi:10.1007/s000160050013. S2CID 122615883..
  31. ^ Thomas Pynchon, Gravity's Rainbow (Picador 1973) p. 12
  32. ^ Nye, Mary Jo (2008). "Blackett, Patrick Maynard Stuart". Complete Dictionary of Scientific Biography. Vol. 19. Charles Scribner's Sons. p. 293. The grandson of a vicar on his father's side, Blackett respected religious observances that were established social customs, but described himself as agnostic or atheist.
  33. ^ "No. 43667". The London Gazette (Supplement). 12 June 1965. p. 5496.
  34. ^ "No. 44460". The London Gazette. 24 November 1967. p. 12859.
  35. ^ "No. 44776". The London Gazette. 28 January 1969. p. 1008.
  36. ^ Bullard, Edward (1974). "Patrick Blackett: An appreciation". Nature. 250 (5465): 370. Bibcode:1974Natur.250..370B. doi:10.1038/250370a0. S2CID 4275713.
  37. ^ "Rare double blue plaque award for home of Nobel Prize winners". BBC News. 20 April 2016. Retrieved 28 April 2016.
  38. ^ Parken, Oliver (29 July 2022). "Royal Navy Christens New Experimental Ship, The XV Patrick Blackett". TheDrive.

Further reading

[edit]
Books
Articles
[edit]
Academic offices
Preceded by 5th Langworthy Professor at the University of Manchester
1937–53
Succeeded by
Professional and academic associations
Preceded by 52nd President of the Royal Society
1965–1970
Succeeded by